
API Security 
Checklist
The practical guide to secure your APIs

Not sure where you stand with API security? This checklist is for you. We 
share common API security issues, their implications, and mitigation 
strategies. The checklist can serve as a starting point for Engineering and 
Security teams looking to keep APIs compliant and secure.

2022© 2022 Wallarm, Inc



2© 2022 Wallarm, Inc

API Checklist
Improper API asset management and discovery 3

API abuse, lack of resources and rate limiting 4

Injections 5

Broken object level authorization (BOLA) / Insecure Direct Object Reference (IDOR) 6

Broken user authentication 7

Excessive data exposure 8

Broken function level authorization 9

Mass assignment 10

Security misconfiguration 11

Insufficient logging & monitoring 12

Intro
APIs come in many flavors, including REST, SOAP, graphQL, gRPC, and 
WebSockets, and each has its own use cases and common 
vulnerabilities. The issues covered in this checklist can occur in any kind 
of API. Regardless of which technology you have used to implement your 
API, read on to find out what you can do today to address the biggest 
potential risks associated with it.



3© 2022 Wallarm, Inc

Improper API asset 
management and discovery
APIs present a large attack surface as each action 
requires its own endpoint. Ensuring all endpoints are 
identified and fully documented allows for potential 
attack vectors to be recognized and mitigated or 
monitored.

Keep track of your assets and infrastructure to ensure they are 
properly secured

Make an inventory of all API infrastructure (from testing to production), 
including who can access each infrastructure item and what data it 
contains, and which API functions access them or are hosted by them

Continuously run API Discovery to identify changes in APIs and surface 
shadow APIs and rogue APIs

Do the same for all services that are integrated with your API

Thoroughly document every aspect of your API, including all authorization 
policies, error reporting, and security measures. Share this documentation 
with the team members responsible for testing and reviewing the security of 
the application

To prevent unintentional data disclosure, avoid using production data for 
testing unless doing so is absolutely necessary

https://www.wallarm.com/what/lack-of-resources-rate-limiting
https://www.wallarm.com/what/what-is-api-abuse
https://www.wallarm.com/what/api8-injection
https://github.com/wallarm/api-firewall
https://github.com/wallarm/api-firewall
https://www.wallarm.com/what/broken-object-level-authorization
https://www.wallarm.com/what/what-is-the-oauth
https://www.wallarm.com/what/broken-user-authentication
https://www.wallarm.com/what/what-is-multifactor-authentication-mfa
https://www.wallarm.com/what/excessive-data-exposure
https://www.wallarm.com/what/crud-meaning
https://www.wallarm.com/what/crud-meaning
https://www.wallarm.com/what/broken-function-level-authorization
https://www.wallarm.com/what/mass-assignment
https://www.wallarm.com/what/api-security-tutorial
https://www.wallarm.com/what/what-is-multicloud
https://www.wallarm.com/what/insufficient-logging-monitoring
https://www.wallarm.com/what/siem-whats-security-information-and-event-management-technology-part-1
https://www.wallarm.com/what/siem-whats-security-information-and-event-management-technology-part-1
https://www.wallarm.com/
https://www.wallarm.com/request-demo
https://www.wallarm.com/


4© 2022 Wallarm, Inc

API abuse, lack of resources 

and rate limiting
APIs that do not impose rate or resource limits are 
vulnerable to brute force or other DoS style attacks. 
For example, brute force attacks are common against 
authentication endpoints and make it easy for 
attackers to perform password stuffing or user 
enumeration attacks. In addition, attackers can use 
DoS techniques to overload API infrastructure.

API

Limiting access to your resources

Implement rate limits for every API endpoint that limit how many requests a 
client can make in a given period of time;

Implement request size limits and limits to the size of submitted strings and 
arrays;

Validate user submitted data before it is executed by your API functions;

Use bot mitigation tools to prevent abuse by automated tooling;

Block traffic from unwanted geographical regions, data centers, and Tor 
relay nodes;

Only allow traffic to private API endpoints from allow-listed IP addresses;

Keep known continuous attackers in the block-list.

https://www.wallarm.com/what/improper-assets-management
https://www.wallarm.com/what/api8-injection
https://github.com/wallarm/api-firewall
https://github.com/wallarm/api-firewall
https://www.wallarm.com/what/broken-object-level-authorization
https://www.wallarm.com/what/what-is-the-oauth
https://www.wallarm.com/what/broken-user-authentication
https://www.wallarm.com/what/what-is-multifactor-authentication-mfa
https://www.wallarm.com/what/excessive-data-exposure
https://www.wallarm.com/what/crud-meaning
https://www.wallarm.com/what/crud-meaning
https://www.wallarm.com/what/broken-function-level-authorization
https://www.wallarm.com/what/mass-assignment
https://www.wallarm.com/what/api-security-tutorial
https://www.wallarm.com/what/what-is-multicloud
https://www.wallarm.com/what/insufficient-logging-monitoring
https://www.wallarm.com/what/siem-whats-security-information-and-event-management-technology-part-1
https://www.wallarm.com/what/siem-whats-security-information-and-event-management-technology-part-1
https://www.wallarm.com/
https://www.wallarm.com/request-demo
https://www.wallarm.com/


5© 2022 Wallarm, Inc

Injections
Unsanitized input from a malicious client can be used 
to execute arbitrary code on your infrastructure. SQL 
injections can result in attackers having full access to 
production databases, and shell injections have the 
potential to grant attackers control over application 
servers.

Best practices to avoid injection vulnerabilities

Validate and sanitize all input from the client;

Ensure all input is properly escaped using the correct syntax; 

Use API threat prevention tooling that supports required protocols (REST, 
GraphQL, etc). Ensure that your solution provides poproper inspection for 
API calls and is a good fit for detecting injections;

Utilize your OpenAPI/Swagger schema to validate incoming API requests 
and block malicious requests (for example, by using an open source 
validator)

https://www.wallarm.com/what/improper-assets-management
https://www.wallarm.com/what/lack-of-resources-rate-limiting
https://www.wallarm.com/what/what-is-api-abuse
https://www.wallarm.com/what/what-is-the-oauth
https://www.wallarm.com/what/broken-user-authentication
https://www.wallarm.com/what/what-is-multifactor-authentication-mfa
https://www.wallarm.com/what/excessive-data-exposure
https://www.wallarm.com/what/crud-meaning
https://www.wallarm.com/what/crud-meaning
https://www.wallarm.com/what/broken-function-level-authorization
https://www.wallarm.com/what/mass-assignment
https://www.wallarm.com/what/api-security-tutorial
https://www.wallarm.com/what/what-is-multicloud
https://www.wallarm.com/what/insufficient-logging-monitoring
https://www.wallarm.com/what/siem-whats-security-information-and-event-management-technology-part-1
https://www.wallarm.com/what/siem-whats-security-information-and-event-management-technology-part-1
https://www.wallarm.com/
https://www.wallarm.com/request-demo
https://www.wallarm.com/


6© 2022 Wallarm, Inc

Broken object level 
authorization (BOLA) / Insecure 
Direct Object Reference (IDOR)
Object Level Access Control issues arise if 
authorization checks are not performed for every 
function that could potentially be manipulated via 
user input by an untrusted party. For example, if an 
object is accessed by a unique ID specified by the 
end user, an attacker could change this ID in a 
malicious request to gain access to other objects the 
user should not have access to.

Steps you can take to fix broken authorization

Implement an authorization mechanism that checks whether the logged in 
user has permission to perform an action;

Use this authorization mechanism in all functions that accesses sensitive 
data;

Use randomly generated GUIDs (as they are hard to guess) as object 
identifiers for user requests.

https://www.wallarm.com/what/improper-assets-management
https://www.wallarm.com/what/lack-of-resources-rate-limiting
https://www.wallarm.com/what/what-is-api-abuse
https://www.wallarm.com/what/api8-injection
https://www.wallarm.com/what/what-is-multifactor-authentication-mfa
https://www.wallarm.com/what/excessive-data-exposure
https://www.wallarm.com/what/crud-meaning
https://www.wallarm.com/what/crud-meaning
https://www.wallarm.com/what/broken-function-level-authorization
https://www.wallarm.com/what/mass-assignment
https://www.wallarm.com/what/api-security-tutorial
https://www.wallarm.com/what/what-is-multicloud
https://www.wallarm.com/what/insufficient-logging-monitoring
https://www.wallarm.com/what/siem-whats-security-information-and-event-management-technology-part-1
https://www.wallarm.com/what/siem-whats-security-information-and-event-management-technology-part-1
https://www.wallarm.com/
https://www.wallarm.com/request-demo
https://www.wallarm.com/


7© 2022 Wallarm, Inc

Broken user authentication
Improperly implemented user authentication often 
renders other security measures obsolete as it does 
not provide a foundation of an authenticated user to 
build other security measures with. Technical flaws in 
a user authentication system can allow malicious 
parties to impersonate legitimate users. Some 
technical flaws could include using expired or leaked 
tokens/sessions, guessable or predictable 
authentication tokens, or otherwise broken credential 
verification before minting valid user sessions.

Protecting your API against attacks on your authentication system

Use commonly accepted standards like OAuth and JWT for the 
authentication process;

Identify and document all paths that can be used to authenticate with your 
API and ensure they are reviewed for possible credential leaks;

Do not return any sensitive information like passwords, keys, or tokens 
directly in API responses;

Protect all login, password recovery, and registration paths using rate 
limiting, brute force protection, and by adding lockout measures for abusive 
traffic sources;

Implement and use multi-factor authentication (MFA) wherever possible, 
and use revocable tokens where implementing MFA is not feasible.

https://www.wallarm.com/what/improper-assets-management
https://www.wallarm.com/what/lack-of-resources-rate-limiting
https://www.wallarm.com/what/what-is-api-abuse
https://www.wallarm.com/what/api8-injection
https://github.com/wallarm/api-firewall
https://github.com/wallarm/api-firewall
https://www.wallarm.com/what/broken-object-level-authorization
https://www.wallarm.com/what/what-is-the-oauth
https://www.wallarm.com/what/excessive-data-exposure
https://www.wallarm.com/what/crud-meaning
https://www.wallarm.com/what/crud-meaning
https://www.wallarm.com/what/broken-function-level-authorization
https://www.wallarm.com/what/mass-assignment
https://www.wallarm.com/what/api-security-tutorial
https://www.wallarm.com/what/what-is-multicloud
https://www.wallarm.com/what/insufficient-logging-monitoring
https://www.wallarm.com/what/siem-whats-security-information-and-event-management-technology-part-1
https://www.wallarm.com/what/siem-whats-security-information-and-event-management-technology-part-1
https://www.wallarm.com/
https://www.wallarm.com/request-demo
https://www.wallarm.com/


8© 2022 Wallarm, Inc

Excessive data exposure
For the sake of convenience, many developers 
expose all of the properties of objects through API 
endpoints. This is intended to allow front-end 
developers access to all of the required resources, 
but can result in unintended data exposure.

What your engineers can do to avoid unintended data exposure

Define exactly which object properties are to be returned in your API 
functions rather than returning entire objects;

Return only the data the client requests from your API functions rather than 
returning all available data and expecting the client to filter it;

Limit the number of records that can be affected by a query in API 
functions to prevent mass updating or disclosure of database records;

Validate API responses from a central schema that filters out object 
properties that should not be visible to the requesting user.

https://www.wallarm.com/what/improper-assets-management
https://www.wallarm.com/what/lack-of-resources-rate-limiting
https://www.wallarm.com/what/what-is-api-abuse
https://www.wallarm.com/what/api8-injection
https://github.com/wallarm/api-firewall
https://github.com/wallarm/api-firewall
https://www.wallarm.com/what/broken-object-level-authorization
https://www.wallarm.com/what/what-is-the-oauth
https://www.wallarm.com/what/broken-user-authentication
https://www.wallarm.com/what/mass-assignment
https://www.wallarm.com/what/api-security-tutorial
https://www.wallarm.com/what/what-is-multicloud
https://www.wallarm.com/what/insufficient-logging-monitoring
https://www.wallarm.com/what/siem-whats-security-information-and-event-management-technology-part-1
https://www.wallarm.com/what/siem-whats-security-information-and-event-management-technology-part-1
https://www.wallarm.com/
https://www.wallarm.com/request-demo
https://www.wallarm.com/


9© 2022 Wallarm, Inc

Broken function level 
authorization
Overly complex and decentralized authorization 
policies make it confusing for engineers to implement 
the correct authorization for a given object or 
endpoint, leading to mistakes in authorization that 
can be exploited to access protected resources.

Important steps to fix authorization issues in your code

Ensure your authorization frameworks grant access explicitly to individual 
resources.

Ensure the default permission for all users for all resources is to deny 
access. 

Centralize your authorization code so that it can be regularly reviewed and 
vetted, knowing that the review covers authorization wherever it is used in 
your API.

https://www.wallarm.com/what/improper-assets-management
https://www.wallarm.com/what/lack-of-resources-rate-limiting
https://www.wallarm.com/what/what-is-api-abuse
https://www.wallarm.com/what/api8-injection
https://github.com/wallarm/api-firewall
https://github.com/wallarm/api-firewall
https://www.wallarm.com/what/broken-object-level-authorization
https://www.wallarm.com/what/what-is-the-oauth
https://www.wallarm.com/what/broken-user-authentication
https://www.wallarm.com/what/what-is-multifactor-authentication-mfa
https://www.wallarm.com/what/excessive-data-exposure
https://www.wallarm.com/what/crud-meaning
https://www.wallarm.com/what/crud-meaning
https://www.wallarm.com/what/api-security-tutorial
https://www.wallarm.com/what/what-is-multicloud
https://www.wallarm.com/what/insufficient-logging-monitoring
https://www.wallarm.com/what/siem-whats-security-information-and-event-management-technology-part-1
https://www.wallarm.com/what/siem-whats-security-information-and-event-management-technology-part-1
https://www.wallarm.com/
https://www.wallarm.com/request-demo
https://www.wallarm.com/


10© 2022 Wallarm, Inc

Mass assignment
Mass assignment flaws allow attackers to modify 
objects by guessing property names or endpoint 
addresses that shouldn’t be accessible, or by 
providing additional object properties through object 
relationships.

Prevent mass assignment attacks by implementing measures to 
validate input

Do not directly assign user input to objects in your API functions or create 
or update objects by directly assigning user input;

Explicitly define the object properties that the user is able to update in your 
API code;

Enforce validation and data schemas so that only approved object 
properties will be used by your API functions.

https://www.wallarm.com/what/improper-assets-management
https://www.wallarm.com/what/lack-of-resources-rate-limiting
https://www.wallarm.com/what/what-is-api-abuse
https://www.wallarm.com/what/api8-injection
https://github.com/wallarm/api-firewall
https://github.com/wallarm/api-firewall
https://www.wallarm.com/what/broken-object-level-authorization
https://www.wallarm.com/what/what-is-the-oauth
https://www.wallarm.com/what/broken-user-authentication
https://www.wallarm.com/what/what-is-multifactor-authentication-mfa
https://www.wallarm.com/what/excessive-data-exposure
https://www.wallarm.com/what/crud-meaning
https://www.wallarm.com/what/crud-meaning
https://www.wallarm.com/what/broken-function-level-authorization
https://www.wallarm.com/what/what-is-multicloud
https://www.wallarm.com/what/insufficient-logging-monitoring
https://www.wallarm.com/what/siem-whats-security-information-and-event-management-technology-part-1
https://www.wallarm.com/what/siem-whats-security-information-and-event-management-technology-part-1
https://www.wallarm.com/
https://www.wallarm.com/request-demo
https://www.wallarm.com/


11© 2022 Wallarm, Inc

Security misconfiguration
Resource- and time-constrained engineers may use 
insecure default configurations for security software 
or appliances. Temporary configuration options used 
during development are commonly overlooked and 
make it to production, while attackers can take 
advantage of permissive cloud storage access 
policies, CORS policies, and overly-verbose error 
messages that provide access to, or information 
about, your API to exploit it.

Avoid exposing your API to attack by properly securing it

Ensure your deployment process is security hardened and well-
documented so that a secure hosting environment can be reproduced;

Review your deployment configurations and process regularly, including any 
software dependencies used in your API, deployment and configuration 
files, and the security of your cloud infrastructure;

Limit all client interactions with your API and any other resources (such as 
linked media) to secure, authorized channels;

Only allow API access using necessary HTTP verbs to reduce attack 
surfaces;

Set CORS policies for APIs that are publicly accessible from browser-based 
clients;

https://www.wallarm.com/what/improper-assets-management
https://www.wallarm.com/what/lack-of-resources-rate-limiting
https://www.wallarm.com/what/what-is-api-abuse
https://www.wallarm.com/what/api8-injection
https://github.com/wallarm/api-firewall
https://github.com/wallarm/api-firewall
https://www.wallarm.com/what/broken-object-level-authorization
https://www.wallarm.com/what/what-is-the-oauth
https://www.wallarm.com/what/broken-user-authentication
https://www.wallarm.com/what/what-is-multifactor-authentication-mfa
https://www.wallarm.com/what/excessive-data-exposure
https://www.wallarm.com/what/crud-meaning
https://www.wallarm.com/what/crud-meaning
https://www.wallarm.com/what/broken-function-level-authorization
https://www.wallarm.com/what/mass-assignment
https://www.wallarm.com/what/api-security-tutorial
https://www.wallarm.com/what/siem-whats-security-information-and-event-management-technology-part-1
https://www.wallarm.com/what/siem-whats-security-information-and-event-management-technology-part-1
https://www.wallarm.com/
https://www.wallarm.com/request-demo
https://www.wallarm.com/


12© 2022 Wallarm, Inc

Insufficient logging & monitoring
Poor application monitoring and logging allows 
attackers to get access to your data and infrastructure 
before they've been noticed, or without being noticed 
at all. Rigorous monitoring and accurate and 
informative logging are required to identify breaches 
and potential future threats, as well as to catch 
ongoing attacks before they can progress.

Your security engineers need to know about problems before they 
can fix them

Log all authentication and authorization failures;

Log request details that can be used to quickly identify the source of an 
attack using API security tooling;

Properly format logs so that they can be filtered and reported with a log 
management platform;

Treat logs as sensitive data, as they contain information on both your users 
and API vulnerabilities;

Implement continuous monitoring of your infrastructure and tailor your 
monitoring reports to include the information that is most important to your 
API security.

https://www.wallarm.com/what/improper-assets-management
https://www.wallarm.com/what/lack-of-resources-rate-limiting
https://www.wallarm.com/what/what-is-api-abuse
https://www.wallarm.com/what/api8-injection
https://github.com/wallarm/api-firewall
https://github.com/wallarm/api-firewall
https://www.wallarm.com/what/broken-object-level-authorization
https://www.wallarm.com/what/what-is-the-oauth
https://www.wallarm.com/what/broken-user-authentication
https://www.wallarm.com/what/what-is-multifactor-authentication-mfa
https://www.wallarm.com/what/excessive-data-exposure
https://www.wallarm.com/what/crud-meaning
https://www.wallarm.com/what/crud-meaning
https://www.wallarm.com/what/broken-function-level-authorization
https://www.wallarm.com/what/mass-assignment
https://www.wallarm.com/what/api-security-tutorial
https://www.wallarm.com/what/what-is-multicloud
https://www.wallarm.com/
https://www.wallarm.com/request-demo
https://www.wallarm.com/

